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Abstract
New results for the reflection coefficient of shock-compressed dense xenon
plasmas at pressures of 1.6–20 GPa and temperatures around 30 000 K are
interpreted. Reflectivities typical of metallic systems are found at high
densities. A consistent description of the measured reflectivities is achieved
if a finite width of the shock wave front is considered. Several mechanisms
to give a microscopic explanation for a finite extension of the shock front are
discussed.

PACS numbers: 52.25.Fi, 52.25.Mq, 52.27.Gr, 52.38.Dx

1. Introduction

The measurement of the optical reflectivity on dense plasmas is an important diagnostic tool.
In particular, it is expected that information about thermodynamic parameters, such as the
density ne of free charge carriers, can be deduced. Reflectivity measurements in dense xenon
plasmas, which were produced by intense shock waves, have been performed with a laser beam
of wavelength 1.06 µm [1]. Recently, measurements at a second wavelength of 0.694 µm
[2, 3] using the same experimental set-up have become available. Data at a third wavelength
of 0.532 µm are reported in this volume [4]. For laser frequencies ωL = 2πc/λ above the
plasma frequency ωpl = (nee

2/ε0me)
1/2, it is expected that the plasma becomes transparent.

For the frequencies used here this relates to critical densities ncr
e = ε0meω

2
L

/
e2, as shown in

table 1.
However, at temperatures around 30 000 K, an increase of the reflectivity indicating the

onset of metallic behaviour was observed for densities only above the critical density.
The reflectivity on step-like plasma fronts can be calculated via the Fresnel formula [5].

Then, the reflectivity is directly related to the dielectric function which is calculated via a
generalized Drude formula [6, 7]

ε(ω) = 1 − ω2
pl

ω[ω + iν(ω)]
, (1)
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Table 1. Laser wavelength λ, corresponding frequency ωL and critical density ncr
e .

λ (nm) ωL (1015 Hz) ncr
e (1021 cm−3)

1060 1.78 1.0
694 2.71 2.3
532 3.53 3.9

where the dynamical collision frequency ν(ω) is introduced. The calculation of the reflectivity
is thus traced back to the evaluation of the dynamical collision frequency. This approach has
been extensively investigated including strong collisions, dynamical effects and additional
scattering mechanisms due to partial ionization, for details see [3, 6, 8]. But it fails to describe
the experimental data on the reflectivity of xenon satisfactorily. A similar conclusion has
been found by Kurilenkov et al [9, 10] who used a generalized Drude formula similar to
equation (1), and calculated the collision frequency in slightly different approximations.
Desjarlais [11] applied molecular dynamics calculations with density functional theory
combined with ionization degrees taken from Gryaznov et al [6]. However, significant
differences with the experimental data have remained. In conclusion, the steep increase
of the reflectivity only at densities above the critical one cannot be explained assuming a step-
like plasma front despite a highly sophisticated approach for the calculation of the dielectric
function.

An explanation for the experimental data is found if the constraint of a step-like plasma
front is removed. In the following, more general assumptions about the charge density profile
across the shock wave front have been considered. In particular, based on measurements of
the reflectivity at the third wavelength, a test of previously developed parametrizations [3, 6]
is possible. Within this paper, we will focus on the empirical analysis of the reflectivity data
and the microscopic reasoning for a finite width of the shock front.

2. Finite shock front width

We assume a planar shock front propagating in the z direction (normal incidence). A density
profile n(z) of the shock wave front is considered, assuming the free electron density increases
smoothly from zero in front of the shock front to its maximum value ne behind the shock
front, see [1, 2, 4]. If this maximum value ne is above ncr

e (λ), the reflection of electromagnetic
radiation occurred already in the outer region where the density is low. Within a simplified
picture, the radiation penetrates the low-density region of the plasma up to the region where
the density approaches the critical value. Here the wave is reflected.

More rigorously, the reflectivity R from a given charge density profile can be obtained
from the direct solution of the Maxwell equations. Neglecting non-local effects for the
conductivity, we consider the Helmholtz equation [12] for the complex amplitude of the
electric field E(ωL, z),

d2E(ωL, z)

dz2
+

ω2
L

c2
ε(ωL, z)E(ωL, z) = 0. (2)

The dielectric function ε(ωL, z) is calculated from (1) for given density and temperature
profiles n(z), T (z). Different approaches for the collision frequency accounting for frequency
dependence, contribution of neutral bound states, etc have been considered in previous
publications of the authors [3, 6, 8]. In this context, it has been shown that the following
approximations are sufficient. We use the interpolation formula for the static conductivity
as derived by Esser et al [13] in the approximation νdc(n, T ) = (ne2/me) σ−1

dc (n, T ). Then
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Figure 1. Comparison between the bi-linear profile (dashed line) [3] and asymmetric Fermi profile
(3) (solid line) fitted to the reflectivity R at ne = 4 × 1021 cm−3.
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Figure 2. Profile of the shock front density naF(ne, z), equation (3) for different maximum
densities ne.

equation (2) is solved numerically starting from the initial point z0. The reflectivity is given
by R = |Er(z1)|2/|Ei(z1)|2, where Ei(z) and Er(z) describe incident and reflected waves,
respectively, at the free space region z1 (ε(ω, z1) = 1).

For now, we consider a density profile as a given quantity; for a microscopic approach see
below. The temperature is assumed to be uniform at the plasma temperature throughout the
shock wave front. Smooth empirical density profiles for a shock wave front such as a linear
decrease or a spatial variation according to a Fermi function have been considered in various
combinations [3, 6, 8, 14]. As already mentioned in [1], the density profile across the shock
front is expected to increase at first slowly and become steeper towards the plasma region.
Such a behaviour was already reproduced using a bi-linear profile [3]. The disadvantage
of this previously-assumed continuous profile consisting of two Fermi functions [3] was its
symmetry with respect to the gradual changes at the boundary of the profile. Therefore, we
now propose an asymmetric Fermi profile:

naF(ne, z) = ne

eY (z) + 1
, (3)

Y (z) = − z

A
− ez/B + C. (4)

For an appropriate parameter set, this profile is shown in figure 1 in comparison to the bi-
linear profile. As shown in figure 2, the expected general behaviour of the density profile
is reproduced. For the suitably chosen parameters A,B,C see the following section. In
particular, the parameter A affects the width of the ordinary Fermi profile in the low density
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Figure 3. Reflectivity coefficient R for xenon calculated with asymmetric Fermi profile naF (lines)
in comparison with measurements (symbols with error bars) [1, 2, 4] for laser wavelengths 1.06 µm
(solid line,•), 0.694 µm (dashed line, �) and 0.532 µm (dotted line, ), the corresponding critical
densities ncr

e are indicted with vertical lines.

region for negative z. The second parameter B influences the order of asymmetric compression
in the high-density region for positive z. With the last parameter C one is able to choose the
point where the ordinary Fermi function starts to be compressed. The details of the density
profile can be controlled by measuring the reflectivity at different laser frequencies ωL. As
will be shown in the next section, we are able to justify the ansatz equation (3) in an empirical
way. In detail, we use two different laser frequencies ωL to determine the parameters of the
density profile equation (3) and show that the experimental values of the reflectivity R for a
third laser frequency are also well reproduced.

3. Parametrization of the density profile

Using measurements of the reflectivity at different wavelengths, it is possible to determine the
details of the density profile. We use the ansatz equation (3) with open parameters A, B,C.
The parameters were fitted to reproduce the experimental values for the wavelengths 1.06 µm
and 0.694 µm. Interpolating for the reflectivity between different density values ne in the
plasma according to the experiments [1, 2, 4], we found the following parametrization for the
profile:

A(ne) = a1 + a2 · ea3·ne ,

B(ne) = b1 · n3
e + b2 · n2

e + b3 · ne + b4, (5)

C(ne) = c1 · n2
e + c2 · ne + c3

and a1 = 0.032 54 a2 = 1.437, a3 = −0.4909, b1 = −0.003 687, b2 = 0.057 75, b3 =
−0.2560, b4 = 0.479 05, c1 = 0.031 55, c2 = −0.055 37, c3 = 0.4720. The densities
have to be taken in units of 1021 cm−3 and the position z in µm. A landscape of the density
profiles for different values of ne is shown in figure 2.

The results for the reflectivity R, calculated for the asymmetric Fermi profile n(ne, z),
equation (3) and fixed temperature T = 33 000 K are shown in figure 3 for three different
laser frequencies ωL. The critical densities are indicated. Above those, the reflectivity R
starts to increase. Also experimental values are shown. As in former works [3, 6, 8, 14], the
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experimental values at laser wavelengths 1.06 µm and 0.694 µm are well reproduced. Data
at the third wavelength of 0.532 µm have then been calculated from the derived shock wave
profiles. The experimental data are reproduced within the error bars except in the region of
very low densities. The surprisingly good qualitative agreement shows that the adjustment of
the parameters using two wavelengths is sufficient to describe the behaviour of the reflectivity
for the third wavelength and probably other wavelengths as well.

4. Transport and radiation effects in the shock wave front

As shown in the previous sections, the experimental values for the reflectivities are well
explained using a smooth density profile, so that the shock wave front is smeared out over a
range of 0.1–1.0 µm. However, a microscopic approach is needed to give a justification of
this empirical ansatz. We discuss some effects which lead to a softened profile instead of a
step-like density profile.

A first discussion can be given with respect to local equilibrium and charge neutrality.
At typical parameter values ne ≈ 1021 cm−3 and T = 33 000 K, the mean free path of the
electrons le = √

kBT/meν
−1
dc results in 1.55 nm so that the scale is far below the µm scale.

Similarly, the Debye length λD =
√

ε0kBT/(e2ne) is 1.4 nm, so that the distance at which free
electrons spread out into the low-density region in front of the shock front is also very small
in comparison to the µm scale, see also [15]. Thus, neither effect is appropriate to explain the
empirically obtained density profile.

Assuming local equilibrium, a hydrodynamic description of the density and temperature
profile is possible. Hydrodynamic investigations with the program package MULTI [16] were
performed. Using a real gas equation of state without transport processes and simulating the
propagation of a high speed target into the homogenous material, a step-like profile results.
Traditionally [17], the description of the shock wave front is done using the hydrodynamic
equations leading to the Hugoniot equation for a sharp shock wave front. The experimentally
observed shock wave velocities can be reproduced very well. However, we should also take
into account dissipative effects. The inclusion of viscosity in the momentum and energy
balance equations and the thermal conductivity κ in the energy balance can be done [18]
and leads to a nonlinear differential equation of second order for the position-dependent
velocity. Some further approximations, which are justified in our parameter range as checked
by comparing with the numerical solution, allow an estimate for the width of the shock
wave [18]

�z = 2(γ − 1)

γ + 1

κmXe

ρ(vp − vs)kB

(
2vp

vs
− 1

)
ln

(
1

δ
− 1

)
, (6)

where vp and vs are the velocities of the piston and the shock wave, respectively. ρ is the
mass density in the plasma and δ is the relative deviation of the velocity from the velocity at
infinity. For the mono-atomic ideal gas, we have γ = 5/3. Hirschfelder et al [18] give a
thermal conductivity κ of 5.5 × 10−3 W (K m)−1 for neutral xenon gas if considered as a
Lennard-Jones system. Thus the shock wave width is determined within a hydrodynamic
approach to be about 1–2 nm, several orders of magnitude narrower than we had to assume in
order to fit the experimental data. We conclude that the assumption of local equilibrium for
the hydrodynamic description is not able to produce a smooth density profile.

Ionization caused by thermal radiation from the heated plasma could lead to more free
charge carriers in front of the shock wave. We have calculated the maximum possible
free electron density using the program package COMPTRA04 [19]. It determines the
thermodynamic properties under the assumption of coupled mass action laws for atoms and
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Figure 4. Degree of ionization α (solid line) over temperature computed by COMPTRA04 [19] at
n = 1.24 × 1020 cm−3. The relative proportions of relevant ions are also represented.

ions taking into account non-ideality corrections in the virial expansions. The total density
was assumed to be the initial density before the compression of xenon. The temperature was
then varied up to a maximum of about 33 000 K. An example is shown in figure 4 where the
initial total density was taken as 1.24 × 1020 cm−3. We find that the maximum free electron
density is reached at the maximum temperature, as expected. Since the initial densities are
so low, even the observed ionization degree of α = 2.4 leads only to a free electron density
of 3 × 1020 cm−3, which is below the critical densities ncr

e , see table 1. A precursor of free
electron density due to radiative heating is not sufficient to explain the absolute smooth density
profile.

5. Conclusion

The reflectivity on shock-compressed plasma has been calculated and compared with
experimental results on Xe which have been observed for three different wavelengths. The
empirical assumption of a spatially extended finite shock wave front leads to a good agreement
with the experimental data. However, the discussion on possible scenarios which cause this
shock wave front is still unsatisfying. Within hydrodynamic considerations and simulations,
microscopic processes which lead to a finite shock wave front are discussed. Under the
assumption of local equilibrium, neither dissipative processes in the hydrodynamic equations
nor radiation transport seem to give the expected width of the front. The validity of this
assumption and the use of kinetic equations should be investigated. So far, we have assumed
a plane shock wave surface. Here, work is in progress.
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[9] Kurilenkov Y, Berkovsy M, Hocini S and Skowronek M 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2021

[10] Berkovsky M, Kurilenkov Y and Milchberg H 1992 Phys. Fluids B 4 2423
[11] Desjarlais M P 2005 Contrib. Plasma Phys. 45 300
[12] Lekner J 1987 Theory of Reflection (Dordrecht: Martinus Nijhoff)
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